

Arm: Preparing for the future

Ian Thornton, Head of Investor Relations

Preparing for the future

Predicting the future

Investing for the future

Financing for the future

Predicting the future

((•))

0100

August 1991: Arm invited all its customers to Cambridge

August 1991: Arm invited all its customers to Cambridge

August 2017: Arm Partner Meeting "Architecting Tomorrow"

August 2017: Arm Partner Meeting "Architecting Tomorroy

800 customers and partners

600 Arm managers and engineers

50 technology presentations 3,500 meetings to align roadmaps Technology demonstrations August 2017: Arm Partner Meeting "Architecting Tomorrow"

Discussed long-term technology trends >10 years Shared and aligned roadmaps over next 5 years Agreed specifications for products in 2 years time Initiated sales cycles for product to be delivered next year Signed agreements for Q2 2017

Arm works across and deep into each market

arm

Arm product development

Continuous engagement with OEM, S/W vendors, EDA, tools, foundries, etc.

Arm product development

Continuous engagement with OEM, S/W vendors, EDA, tools, foundries, etc.

Case study #1: Accidentally winning the tablet

First +1GHz Arm processor

In 2003, Arm started to work on the first Arm processor targeting 1GHz (on 65nm)

In 2004, Arm acquired Artisan for \$1bn (50% of Arm's market cap)

Codename: Tiger

Targeting the MID (Mobile Internet Computer)

12 © Arm 2017

Case study #1: Accidentally winning the tablet

Arm's roadmap was heading towards the laptop

In H1 2006, Intel sold its Arm mobile business to Marvell

In H2 2006, Arm learnt that Intel was developing "Atom" – a low power x86 for mobile

In H1 2008, Intel introduced Atom chips for mobile

First Apple iPad 2010

Apple A4 SOC based on Cortex-A8 running at 1GHz

First Android Tablet 2009

Archos 5; TI OMAP3 Cortex-A8 running at 0.8GHz

Case study #1: Accidentally winning the tablet

And turning one of our biggest customers into a competitor

Arm-based devices winning in PCs?

Case study #2: AI is not just a cloud technology

Today majority of AI workloads are run in the cloud
Training algorithms need huge amounts of compute

 In the future, trained algorithms will run on inference engines – these are much simpler and will run on client devices (phones, camera, cars, etc.)

Case study #2: Al is not just a cloud technology

Investing for the future

mirror_mod.use_y = True mirror_mod.use_y = True mirror_mod.use_z = False elif_operation == "MIRROR_Z": mirror_mod.use_x = False mirror_mod.use_y = False mirror_mod.use_y = True

D-58457-DJ

Technology trends that will redefine all industries

Security and Privacy

Arm defines the technology that will redefine all industries

	Mobile and Consumer	Networking and Servers	Automotive and Robotics	Internet of Things
Artificial Intelligence in every device	\checkmark	\checkmark		\checkmark
Autonomous machines				
Augmented reality	\checkmark			
Hyperscale cloud and connectivity				
Security and Privacy			\checkmark	

Journey of the autonomous automotive

"90% of automotive innovation comes from electronics (semiconductors) and software."

- Audi at CES Asia

Cars run on code

arm

Distributed sensors in a car

200 sensors will be used in a car by 2020

Human driving a car

Computer driving a car

Sense	Decid	Act	
Camera	Object classification		Brakes
Radar	Sensor Models	Path Planning	Steering
Lidar	Sensor Fusion		Throttle
GPS	Environment Model	Driving Policy	Lighting
V2X	Scene Understanding		Suspension

Visual representation of what an autonomous vehicle sees by Google: Waymo

Automotive compute in 2020

Cockpit ~50,000 DMIPS

Audio Visual, Maps, Traffic, Toll payment, Google services Rear entertainment, Voice recognition, Gesture control, Cluster and HUD

Connected Gateways ~20,000 DMIPS

LTE 5G, WiFi, Bluetooth connecting to CAN FD, LIN, Flexray, Ethernet

Body Electronics <10,000 DMIPS

HVAC, Lighting, Doors, Electric seat, Windows, Mirrors, Cameras, Seat belt, Air bag, BCM High-end smartphone 30,000-50,000 DMIPS

Main applications processor, WiFi, modem, sensors, etc.

Semi Autonomous ~350,000 DMIPS

Level 3 autonomy, Radar / image processing, Collision avoidance, Precrash, Cruise control, Lane departure, Parking

Chassis ~15,000 DMIPS EPS, ABS/EBS, Active VDC, EPB

e-Powertrain ~15,000 DMIPS

Main Motor control, Transmission, Engine control, Generator/E-water pump Battery management

Technology challenges

Autonomous automotive

Functional safety requirements

Securing everything

Timeline for autonomous driving

2016	2018	2020	2025
	 Advanced Several control functions Collision Avoidance Steering (Low speed) Advanced camera systems CAN FD (10Mbps) Sensor fusion 	 HIGHLY AUTOMATED All-round collision avoidance Limited automated driving Ride sharing Camera systems with 4k Ethernet bus (1Gbps) 	 AUTONOMOUS Start of fully automated driving High speed all-round collision avoidance Car sharing Connected vehicle to vehicle Interactive
Relative to 2016 Vehicles	20X performance 10X Data rate	40-50X performance 100X Data rate	100X performance 400x Data rate
Scalable processing solutions	arm Powered SoC	Orm Powered SoC SoC	arm arm Powered Powered SoC SoC

Financing the future

Investment philosophy

"Now is the time to be sowing, not harvesting"

- Rate of investment is discretionary and under Arm's control
- SoftBank has asked Arm to accelerate investments and to increase risk appetite
- All costs are expected to be financed from IP business' revenue streams
- During this accelerated investment phase, costs are expected to grow faster than revenues

arm

Revenues, profits and profitability

Over the past 10 yea revenues grew faster	rs Arm's than costs
In Q1 2017	
Revenues	+2%
 Headcount 	+23%
Costs	+94%
 Profits 	-66%
IFRS Margin	13%

31 © Arm 2017

- 2016: Execution costs associated with SoftBank acquisition

Investing in people, infrastructure to create new products

Costs were higher in Q1 2017 as Arm expands R&D capability

Intangibles and Goodwill

Amortisation of Intangibles

Arm's intangibles have been valued at around £5bn / \$6.5bn / ¥700bn

Amortised using a straight-line method over the useful life of the asset

Amortisation for first eight years will be around £370m per year (\$93m per quarter)

Goodwill

Goodwill has been valued at around £18bn / \$24bn / ¥2.7tn

Goodwill underpinned by Arm's 10-year plan

Goodwill impairment test annually and on trigger (any event where management changes view on Arm's opportunity)

The future starts today

Thank You